Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography

نویسندگان

  • Elin Ericsson
  • Erik Tesselaar
  • Folke Sjöberg
چکیده

Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperoxia affects the regional pulmonary ventilation/perfusion ratio: an electrical impedance tomography study.

BACKGROUND The way in which hyperoxia affects pulmonary ventilation and perfusion is not fully understood. We investigated how an increase in oxygen partial pressure in healthy young volunteers affects pulmonary ventilation and perfusion measured by thoracic electrical impedance tomography (EIT). METHODS Twelve semi-supine healthy male volunteers aged 21-36 years were studied while breathing ...

متن کامل

Measurement of ventilation and cardiac related impedance changes with electrical impedance tomography

INTRODUCTION Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. ...

متن کامل

Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study

BACKGROUND Electrical impedance tomography (EIT) is a non-invasive bedside tool which allows an individualized ventilator strategy by monitoring tidal ventilation and lung aeration. EIT can be performed at different cranio-caudal thoracic levels, but data are missing about the optimal belt position. The main goal of this prospective observational study was to evaluate the impact of different el...

متن کامل

Cardiac-related impedance changes obtained by electrical impedance tomography: an acceptable parameter for assessment of pulmonary perfusion?

monitoring regional ventilation. Interest is growing to derive additional information on pulmonary perfusion and ventilation/perfusion distribution. Since signals recorded by electrical impedance tomography also contain cardiac-related impedance changes, attempts are made to evaluate them in view of perfusion. Recently in Critical Care a corresponding study applying an advanced fi ltering techn...

متن کامل

Pulmonary ventilation and perfusion assessed by electrical impedance tomography Experimental studies in pigs

Pulmonary ventilation and perfusion and ventilation/perfusion (V/Q) matching determine gas exchange in every lung unit in the healthy state and in the pathologically altered lung. Mismatch of V and Q lead to hypoxaemia and hypercapnia and monitoring of V/Q relations are thus important in critical illness. This thesis focuses on electrical impedance tomography (EIT) to monitor pulmonary perfusio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016